Demonstrated here is a detailed protocol for Agrobacterium-mediated genetic transformation of maize inbred lines using morphogenic genes Baby boom (Bbm) and Wuschel2 (Wus2). Bbm is regulated by the maize phospholipid transferase gene (Pltp) promoter, and Wus2 is under the control of a maize auxin-inducible (Axig1) promoter. An Agrobacterium strain carrying these morphogenic genes on transfer DNA (T-DNA) and extra copies of Agrobacterium virulence (vir) genes are used to infect maize immature embryo explants. Somatic embryos form on the scutella of infected embryos and can be selected by herbicide resistance and germinated into plants. A heat-activated cre/loxP recombination system built into the DNA construct allows for removal of morphogenic genes from the maize genome during an early stage of the transformation process. Transformation frequencies of approximately 14%, 4%, and 4% (numbers of independent transgenic events per 100 infected embryos) can be achieved for W22, B73, and Mo17, respectively, using this protocol.