Simultaneously targeting multiple energy balance control systems is a promising direction for the development of obesity pharmacotherapies. Here, we explore the interaction between the GLP-1 and melanocortin system within the dorsal vagal complex (DVC) of the caudal brainstem. Using a pharmacological approach, we demonstrate that the full anorectic potential of liraglutide, an FDA-approved GLP-1 analog for the treatment of obesity, requires DVC melanocortin 3/4 receptor (MC3/4R) signaling. Specifically, the food intake and body weight suppressive effects of liraglutide were attenuated by DVC administration of the MC3/4R antagonist SHU9119. In contrast, the anorectic effects of liraglutide were enhanced by combined activation of DVC MC3/4Rs using the agonist MTII. Our findings highlight the modulation of liraglutide-induced anorexia by DVC MC3/4R signaling, thereby suggesting a site of action at which two important energy balance control systems interact.
Keywords: Area postrema; Brainstem; MSH; NTS; Obesity; POMC.
Copyright © 2020 Elsevier Inc. All rights reserved.