Ru0 or RuII: A Study on Stabilizing the "Activated" Form of Ru-PNP Complexes with Additional Phosphine Ligands in Alcohol Dehydrogenation and Ester Hydrogenation

Inorg Chem. 2020 Apr 6;59(7):5099-5115. doi: 10.1021/acs.inorgchem.0c00337. Epub 2020 Mar 20.

Abstract

The complex Ru-MACHO has been previously shown to undergo uncontrolled degradation subsequent to base-induced dehydrochlorination in the absence of a substrate. In this study, we report that stabilization of the dehydrochlorinated Ru-MACHO with phosphines furnishes complexes whose structures depend on the phosphines employed: while PMe3 led to the expected octahedral RuII complex, PPh3 provided access to a trigonal-bipyramidal Ru0 complex. Because both complexes proved to be active in base-free (de)hydrogenation reactions, thorough quantum-chemical calculations were employed to understand the reaction mechanism. The calculations show that both complexes lead to the same mechanistic scenario after phosphine dissociation and, therefore, only differ energetically in this step. According to the calculations, the typically proposed metal-ligand cooperation mechanism is not the most viable pathway. Instead, a metal-ligand-assisted pathway is preferred. Finally, experiments show that phosphine addition enhances the catalyst's performance in comparison to the PR3-free "activated" Ru-MACHO.