Ferrous based, corrosion resistant amorphous alloys supported the adhesion and growth of cultured chick neuronal cells, human marrow stromal cells (presumptive osteoblasts), bovine aortal endothelial cells, and hamster kidney fibroblasts. Alloys of compositions Fe60Ni10Cr10P13C7, Fe70Cr10P13C7, and Fe70Cr10P13B7 were found to be suitable. In contrast the crystalline form of these alloys was markedly less effective. Outgrowth of neurites from neuronal cells was promoted by precoating the metal surface with either laminin or neurite promotion factor. The adhesion of osteoblasts and fibroblasts suggests that corrosion resistant metal glasses should be considered as biomaterials useful for orthopedic applications. The adhesion of neuronal cells accompanied by neurite outgrowth indicates that the system might provide a functional interface between the neuromuscular system and an electromagnetic material that could be useful in bionic engineering.