Direct-acting antivirals (DAAs) revolutionized treatment of hepatitis C virus (HCV) infection. Resistance-associated substitutions (RASs) present at the baseline impair response to DAA due to rapid selection of resistant HCV strains. NS5A is indispensable target of the current DAA treatment regimens. We evaluated prevalence of RASs in NS5A in DAA-naïve patients infected with HCV 1a (n = 19), 1b (n = 93), and 3a (n = 90) before systematic DAA application in the territory of the Russian Federation. Total proportion of strains carrying at least one RAS constituted 35.1% (71/202). In HCV 1a we detected only M28V (57.9%) attributed to a founder effect. Common RASs in HCV 1b were R30Q (7.5%), L31M (5.4%), P58S (4.4%), and Y93H (5.4%); in HCV 3a, A30S (31.0%), A30K (5.7%), S62L (8.9%), and Y93H (2.2%). Prevalence of RASs in NS5A of HCV 1b and 3a was similar to that worldwide, including countries practicing massive DAA application, i.e., it was not related to treatment. NS5A with and without RASs exhibited different co-variance networks, which could be attributed to the necessity to preserve viral fitness. Majority of RASs were localized in polymorphic regions subjected to immune pressure, with selected substitutions allowing immune escape. Altogether, this explains high prevalence of RAS in NS5A and low barrier for their appearance in DAA-inexperienced population.
Keywords: NS5A; amino acid covariance; direct-acting antivirals; hepatitis C virus (HCV); immune escape; resistance-associated substitutions.