H 2S protects against diabetes-accelerated atherosclerosis by preventing the activation of NLRP3 inflammasome

J Biomed Res. 2019 Aug 30;34(2):94-102. doi: 10.7555/JBR.33.20190071.

Abstract

Hydrogen sulfide (H 2S) is an important messenger for its strong anti-inflammatory effects, which may be involved in multiple cardiovascular diseases. In our previous study, we revealed that H 2S attenuated diabetes-accelerated atherosclerosis through suppressing oxidative stress. Here we report that GYY4137, a H 2S donor, reduced the plaque formation of aortic roots and the levels of both intercellular cell adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) in diabetes-accelerated atherosclerotic cells and mouse models. The inflammatory factors of TNF-α, IL-1β, IL-6, and MCP1 were also significantly reduced by GYY4137. Mechanically, GYY4137 suppressed the activation of pyrin domain containing protein 3 (NLRP3) inflammasome in diabetes-accelerated atherosclerosis conditions. Upon knockdown of NLRP3, the increase of ICAM1 and VCAM1 caused by high glucose and oxLDL could be reversed, indicating that H 2S protected the endothelium by inhibiting the activity of NLRP3 inflammasome. In conclusion, our study indicates that GYY4137 effectively protects against the development of diabetes-accelerated atherosclerosis by inhibiting inflammasome activation.

Keywords: H2S; NLRP3; diabetes-accelerated atherosclerosis; inflammation.