Osh6 and Osh7 are lipid transfer proteins (LTPs) that move phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM). High PS levels at the PM are key for many cellular functions. Intriguingly, Osh6 and Osh7 localize to ER-PM contact sites, although they lack membrane-targeting motifs, in contrast to multidomain LTPs that both bridge membranes and convey lipids. We show that Osh6 localization to contact sites depends on its interaction with the cytosolic tail of the ER-PM tether Ist2, a homolog of TMEM16 proteins. We identify a motif in the Ist2 tail, conserved in yeasts, as the Osh6-binding region, and we map an Ist2-binding surface on Osh6. Mutations in the Ist2 tail phenocopy osh6Δ osh7Δ deletion: they decrease cellular PS levels and block PS transport to the PM. Our study unveils an unexpected partnership between a TMEM16-like protein and a soluble LTP, which together mediate lipid transport at contact sites.This article has an associated First Person interview with the first author of the paper.
Keywords: Budding yeast; Lipid homeostasis; Lipid transfer protein; Membrane contact sites; Phosphatidylserine; TMEM16.
© 2020. Published by The Company of Biologists Ltd.