The anterior cingulate cortex (ACC) is involved in emotion regulation and salience processing. Prior research has implicated ACC dysfunction in suicidal ideation (SI) and suicidal behavior. This study aimed to quantify ACC glutamatergic concentrations and to examine relationships with SI in a sample of healthy and depressed adolescents. Forty adolescents underwent clinical evaluation and proton magnetic resonance spectroscopy (1H-MRS) at 3 T, utilizing a 2-dimensional J-averaged PRESS sequence sampling a medial pregenual ACC voxel. Cerebrospinal fluid-corrected ACC metabolite concentrations were compared between healthy control (HC, n = 16), depressed without SI (Dep/SI-, n = 13), and depressed with SI (Dep/SI+, n = 11) youth using general linear models covarying for age, sex, and psychotropic medication use. Relationships between ACC metabolites and continuous measures of SI were examined using multiple linear regressions. ROC analysis was used to determine the ability of glutamate+glutamine (Glx) and the N-acetylaspartate (NAA)/Glx ratio to discriminate Dep/SI- and Dep/SI+ adolescents. Dep/SI+ adolescents had higher Glx than Dep/SI- participants (padj = 0.012) and had lower NAA/Glx than both Dep/SI- (padj = 0.002) and HC adolescents (padj = 0.039). There were significant relationships between SI intensity and Glx (pFDR = 0.026), SI severity and NAA/Glx (pFDR = 0.012), and SI intensity and NAA/Glx (pFDR = 0.004). ACC Glx and NAA/Glx discriminated Dep/SI- from Dep/SI+ participants. Uncoupled NAA-glutamatergic metabolism in the ACC may play a role in suicidal ideation and behavior. Longitudinal studies are needed to establish whether aberrant glutamatergic metabolism corresponds to acute or chronic suicide risk. Glutamatergic biomarkers may be promising targets for novel risk assessment and interventional strategies for suicidal ideation and behavior.