A number of bisphenol A (BPA) analogues are increasingly used as its industrial alternatives. However, their effects on aquatic organisms at both individual and population levels have not been well understood. In this study, effects of five bisphenol analogues (i.e., BPA, BPAF, BPB, BPE and BPS) were investigated by using the unicellular eukaryote Tetrahymena thermophila as a model organism. All of them inhibited individual growth and population proliferation at a concentration of 2.6 μM or 13.0 μM during the 60-h exposure period, with the population suppression capacify ranked as: BPB > BPA ≈ BPAF > BPE > BPS. These analogues also exhibited chemical-specific disruption of fatty acid profiles in single-cell eukaryotes and the transcriptional levels of enzymes involved in fatty acid metabolism/biosynthesis. For example, exposure to BPA and BPE significantly increased the ratio of saturated fatty acids to unsaturated fatty acids, contrary to the desaturation effects exhibited by BPAF and BPB. Overall, our results clearly indicated that these bisphenol analogues could pose chemical-specific effects on low-trophic level aquatic organisms, particularly disruption of endogenous metabolic balances. Selected analogues (i.e., BPB and BPAF) could result in effects similar to or even greater than that of BPA.
Keywords: Bisphenol analogues; Fatty acids; Population proliferation; Tetrahymena thermophile.
Copyright © 2020 Elsevier B.V. All rights reserved.