Immune checkpoint blockade has transformed outcomes across solid organ tumours. Monoclonal antibodies targeting the negative inhibitory cytotoxic T lymphocyte-associated protein 4 and programmed-death 1/programmed death-ligand 1 axis can lead to deep and durable responses across several tumour streams in the advanced setting. This immunotherapy approach is increasingly used earlier in the treatment paradigm. A rapidly evolving regulatory, reimbursement and drug development landscape has accompanied this novel class of immunotherapy. Unfortunately, only a small proportion of patients respond meaningfully to these agents. Here we review how the underlying tumoural genomic, histological and immunological characteristics interact within various patient phenotypes, leading to variations in response to checkpoint blockade. Concurrently, we outline the clinical trial and real-world evidence that allows for appropriate selection of agent, dose and schedule in solid organ malignancies. An exploration of current trends in basic and translational research in immune checkpoint blockade accompanies a commentary on future clinical directions for checkpoint blockade in oncology.
Keywords: checkpoint blockade; cytotoxic T lymphocyte-associated protein 4; genotype; immunotherapy; pharmacology, phenotype; programmed death 1; programmed death-ligand 1.
© 2020 The British Pharmacological Society.