Acinetobacter baumannii is known for its intrinsic resistance to conventional antibiotic treatment and hypervirulence during infection. This coupled with its extraordinary capacity to survive in myriad harsh environments has led to increasing rates of infection in clinical settings. Numerous studies have characterized the virulence factors and resistance genes in A. baumannii responsible for the detrimental outcomes seen in patients; however, the role of regulatory factors in controlling the expression of these genes remains less well explored. Herein we discuss the latest and most influential findings on the regulatory network of A. baumannii, focusing on the transcription factors, two-component systems, and sRNAs. We place particular focus on those identified as being crucial for sensing and responding to continually changing environments, and influencing survival and virulence when engaging with the human host.
Copyright © 2020 Elsevier Ltd. All rights reserved.