Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers

Nat Mater. 2020 Jun;19(6):617-623. doi: 10.1038/s41563-020-0670-3. Epub 2020 May 11.

Abstract

The nanoscale periodic potentials introduced by moiré patterns in semiconducting van der Waals heterostructures have emerged as a platform for designing exciton superlattices. However, our understanding of the motion of excitons in moiré potentials is still limited. Here we investigated interlayer exciton dynamics and transport in WS2-WSe2 heterobilayers in time, space and momentum domains using transient absorption microscopy combined with first-principles calculations. We found that the exciton motion is modulated by twist-angle-dependent moiré potentials around 100 meV and deviates from normal diffusion due to the interplay between the moiré potentials and strong exciton-exciton interactions. Our experimental results verified the theoretical prediction of energetically favourable K-Q interlayer excitons and showed exciton-population dynamics that are controlled by the twist-angle-dependent energy difference between the K-Q and K-K excitons. These results form a basis to investigate exciton and spin transport in van der Waals heterostructures, with implications for the design of quantum communication devices.