Extremity injuries are common in contemporary combat and have become more prevalent as fatality rates have dropped to historic lows. Traumatic extremity wounds, especially those sustained in theater, often present with exposed structures such as tendon, bone, and joint, preventing the use of split-thickness skin grafts (STSG) for coverage. Traditional reconstructive options for these complex wounds include skin substitute with delayed STSG, local flaps, debridement of tendons, pedicled distant flaps (such as cross-leg flap), free tissue transfer, and amputation. STSG, whether on top of skin substitutes or after tendon debridement, can result in contracture and functional limitations in the extremities. Flap reconstructions require prolonged procedures, hospital stays, and periods of immobility. As an alternative to traditional reconstructive options, an autologous homologous skin construct (AHSC) uses a small full-thickness elliptical skin harvest from the patient, which is sent to a biomedical manufacturing facility, processed into AHSC, and can be returned and applied to a wound bed as soon as 48 hours after harvest and used up to 14 days after harvest. We present in this case report the treatment of a 42 cm2 complex dorsolateral ankle wound with exposed tendons in an active duty soldier following a rollover motor vehicle accident sustained in theater. After application of AHSC, the soldier's wound closed in nine weeks with pliable, sensate skin. The patient retained function without contractures limiting ankle motion or adhesions limiting tendon gliding. The successful treatment of this complex war zone injury with AHSC has allowed the soldier to quickly participate in unrestricted physical therapy and is on a trajectory for near-term return to active duty.
Keywords: ahsc; autologous homologous skin construct; combat injury; free flap; free tissue transfer; lower extremity trauma; military; skin graft; trauma; wound.
Copyright © 2020, Johnson et al.