The PET-Tracer 89Zr-Df-IAB22M2C Enables Monitoring of Intratumoral CD8 T-cell Infiltrates in Tumor-Bearing Humanized Mice after T-cell Bispecific Antibody Treatment

Cancer Res. 2020 Jul 1;80(13):2903-2913. doi: 10.1158/0008-5472.CAN-19-3269. Epub 2020 May 14.

Abstract

CD8-expressing T cells are the main effector cells in cancer immunotherapy. Treatment-induced changes in intratumoral CD8+ T cells may represent a biomarker to identify patients responding to cancer immunotherapy. Here, we have used a 89Zr-radiolabeled human CD8-specific minibody (89Zr-Df-IAB22M2C) to monitor CD8+ T-cell tumor infiltrates by PET. The ability of this tracer to quantify CD8+ T-cell tumor infiltrates was evaluated in preclinical studies following single-agent treatment with FOLR1-T-cell bispecific (TCB) antibody and combination therapy of CEA-TCB (RG7802) and CEA-targeted 4-1BB agonist CEA-4-1BBL. In vitro cytotoxicity assays with peripheral blood mononuclear cells and CEA-expressing MKN-45 gastric or FOLR1-expressing HeLa cervical cancer cells confirmed noninterference of the anti-CD8-PET-tracer with the mode of action of CEA-TCB/CEA-4-1BBL and FOLR1-TCB at relevant doses. In vivo, the extent of tumor regression induced by combination treatment with CEA-TCB/CEA-4-1BBL in MKN-45 tumor-bearing humanized mice correlated with intratumoral CD8+ T-cell infiltration. This was detectable by 89Zr-IAB22M2C-PET and γ-counting. Similarly, single-agent treatment with FOLR1-TCB induced strong CD8+ T-cell infiltration in HeLa tumors, where 89Zr-Df-IAB22M2C again was able to detect CD8 tumor infiltrates. CD8-IHC confirmed the PET imaging results. Taken together, the anti-CD8-minibody 89Zr-Df-IAB22M2C revealed a high sensitivity for the detection of intratumoral CD8+ T-cell infiltrates upon either single or combination treatment with TCB antibody-based fusion proteins. These results provide further evidence that the anti-CD8 tracer, which is currently in clinical phase II, is a promising monitoring tool for intratumoral CD8+ T cells in patients treated with cancer immunotherapy. SIGNIFICANCE: Monitoring the pharmacodynamic activity of cancer immunotherapy with novel molecular imaging tools such as 89Zr-Df-IAB22M2C for PET imaging is of prime importance to identify patients responding early to cancer immunotherapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Bispecific / immunology
  • Antibodies, Bispecific / pharmacology*
  • CD8-Positive T-Lymphocytes / immunology*
  • Carcinoembryonic Antigen
  • Female
  • Folate Receptor 1 / immunology
  • Humans
  • Immunotherapy / methods*
  • Mice
  • Mice, Inbred NOD
  • Mice, SCID
  • Molecular Imaging / methods*
  • Positron-Emission Tomography / methods*
  • Radiopharmaceuticals / metabolism
  • Tumor Cells, Cultured
  • Uterine Cervical Neoplasms / immunology*
  • Uterine Cervical Neoplasms / metabolism
  • Uterine Cervical Neoplasms / therapy
  • Zirconium / metabolism*

Substances

  • Antibodies, Bispecific
  • Carcinoembryonic Antigen
  • FOLR1 protein, human
  • Folate Receptor 1
  • Radiopharmaceuticals
  • Zirconium