The effect of an amyloidogenic intrinsically disordered protein, α-synuclein, which is associated with Parkinson's disease (PD), on the conformational dynamics of a DNA hairpin (DNA-HP) was studied by employing the single-molecule Förster resonance energy transfer method. The open-to-closed conformational equilibrium of the DNA-HP is drastically affected by binding of monomeric α-synuclein to the loop region of the DNA-HP. Formation of a protein-bound intermediate conformation is fostered in the presence of an aqueous two-phase system mimicking intracellular liquid-liquid phase separation. Using pressure modulation, additional mechanistic information about the binding complex could be retrieved. Hence, in addition to toxic amyloid formation, α-synuclein may alter expression profiles of disease-modifying genes in PD. Furthermore, these findings might also have significant bearings on the understanding of the physiology of organisms thriving at high pressures in the deep sea.
Keywords: DNA hairpin; biophysics; high pressure chemistry; smFRET; α-synuclein.
© 2020 The Authors. Published by Wiley-VCH GmbH.