Although hippocampal volume has served as a long-standing predictor of cognitive decline, diffusion magnetic resonance imaging studies of white matter have shown similar relationships. Still, it remains unclear if gray matter and white matter interact to predict cognitive impairment and longitudinal decline. Here, we investigate whether free-water (FW) and FW-corrected fractional anisotropy (FAT) within medial temporal lobe white matter tracts provides meaningful contribution to cognition and cognitive decline beyond hippocampal volume. Using data from the Vanderbilt Memory & Aging Project (n = 319), we found that FW was associated with baseline memory and executive function beyond that of hippocampal volume and other comorbidities. Longitudinal analyses demonstrated significant interactions of hippocampal volume and inferior longitudinal fasciculus (p = 0.043) and cingulum bundle (p = 0.025) FAT on memory decline and with fornix FAT (p = 0.025) on decline in executive function. Results suggest that FW metrics of white matter have a unique role in cognitive decline and should be included in theoretical models of aging, cerebrovascular disease, and Alzheimer's disease.
Keywords: Cognition; Diffusion MRI; Free-water; Medial temporal lobe; Tractography.
Copyright © 2020 Elsevier Inc. All rights reserved.