Making rapid decisions on the basis of sensory information is essential to everyday behaviors. Why, then, are perceptual decisions so variable despite unchanging inputs? Spontaneous neural oscillations have emerged as a key predictor of trial-to-trial perceptual variability. New work casting these effects in the framework of models of perceptual decision-making has driven novel insight into how the amplitude of spontaneous oscillations impact decision-making. This synthesis reveals that the amplitude of ongoing low-frequency oscillations (<30 Hz), particularly in the alpha-band (8-13 Hz), bias sensory responses and change conscious perception but not, surprisingly, the underlying sensitivity of perception. A key model-based insight is that various decision thresholds do not adapt to alpha-related changes in sensory activity, demonstrating a seeming suboptimality of decision mechanisms in tracking endogenous changes in sensory responses.
Keywords: alpha oscillations; computational model; electrophysiology; perceptual awareness; signal detection theory.
Published by Elsevier Ltd.