Solid-state excitonic excitations play an increasingly important role in optoelectronic and light harvesting processes due to their ubiquitous presence in dipolar two-dimensional materials. Here we show that long-lived solid-state excitons induce chemical reactions in adsorbed molecules and thus convert light into chemical energy. For the model system (NO)2 dimer adsorbed on ordered c(4×4) C60 films, time-of-flight measurements following UV laser excitation reveal a slow and a fast dissociative desorption channel, which are assigned to intersystem crossing and internal conversion, respectively, by time-dependent density functional theory calculations.