Single-molecule dynamics of Dishevelled at the plasma membrane and Wnt pathway activation

Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16690-16701. doi: 10.1073/pnas.1910547117. Epub 2020 Jun 29.

Abstract

Dvl (Dishevelled) is one of several essential nonenzymatic components of the Wnt signaling pathway. In most current models, Dvl forms complexes with Wnt ligand receptors, Fzd and LRP5/6 at the plasma membrane, which then recruits the destruction complex, eventually leading to inactivation of β-catenin degradation. Although this model is widespread, direct evidence for the individual steps is lacking. In this study, we tagged mEGFP to C terminus of dishevelled2 gene using CRISPR/Cas9-induced homologous recombination and observed its dynamics directly at the single-molecule level with total internal reflection fluorescence (TIRF) microscopy. We focused on two questions: 1) What is the native size and what are the dynamic features of membrane-bound Dvl complexes during Wnt pathway activation? 2) What controls the behavior of these complexes? We found that membrane-bound Dvl2 is predominantly monomer in the absence of Wnt (observed mean size 1.1). Wnt3a stimulation leads to an increase in the total concentration of membrane-bound Dvl2 from 0.12/μm2 to 0.54/μm2 Wnt3a also leads to increased oligomerization which raises the weighted mean size of Dvl2 complexes to 1.5, with 56.1% of Dvl still as monomers. The driving force for Dvl2 oligomerization is the increased concentration of membrane Dvl2 caused by increased affinity of Dvl2 for Fzd, which is independent of LRP5/6. The oligomerized Dvl2 complexes have increased dwell time, 2 ∼ 3 min, compared to less than 1 s for monomeric Dvl2. These properties make Dvl a unique scaffold, dynamically changing its state of assembly and stability at the membrane in response to Wnt ligands.

Keywords: Dishevelled; Wnt signaling pathway; fluorescence; protein complex size; single molecule.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Membrane / chemistry
  • Cell Membrane / genetics
  • Cell Membrane / metabolism*
  • Dishevelled Proteins / chemistry
  • Dishevelled Proteins / genetics
  • Dishevelled Proteins / metabolism*
  • HEK293 Cells
  • Humans
  • Low Density Lipoprotein Receptor-Related Protein-5 / genetics
  • Low Density Lipoprotein Receptor-Related Protein-5 / metabolism
  • Low Density Lipoprotein Receptor-Related Protein-6 / genetics
  • Low Density Lipoprotein Receptor-Related Protein-6 / metabolism
  • Protein Binding
  • Single Molecule Imaging
  • Wnt Signaling Pathway
  • Wnt3A Protein / chemistry
  • Wnt3A Protein / genetics
  • Wnt3A Protein / metabolism*

Substances

  • Dishevelled Proteins
  • LRP5 protein, human
  • LRP6 protein, human
  • Low Density Lipoprotein Receptor-Related Protein-5
  • Low Density Lipoprotein Receptor-Related Protein-6
  • Wnt3A Protein