Objective: Seizure recurrence following surgery for temporal lobe (TL) epilepsy may be related to extratemporal epileptogenic foci, so-called temporal-plus (TL+) epilepsy. Here, we sought to leverage whole brain connectomic profiling in magnetoencephalography (MEG) to identify neural networks indicative of TL+ epilepsy in children.
Methods: Clinical and MEG data were analyzed for 121 children with TL and TL+ epilepsy spanning 20 years at the Hospital for Sick Children. Resting-state connectomes were derived using the weighted phase lag index from neuromagnetic oscillations. Multidimensional associations between patient connectomes, TL versus TL+ epilepsy, seizure freedom, and clinical covariates were performed using a partial least squares (PLS) analysis. Bootstrap resampling statistics were performed to assess statistical significance.
Results: A single significant latent variable representing 66% of the variance in the data was identified with significant contributions from extent of epilepsy (TL vs TL+), duration of illness, and underlying etiology. This component was associated with significant bitemporal and frontotemporal connectivity in the theta, alpha, and beta bands. By extracting a brain score, representative of the observed connectivity profile, patients with TL epilepsy were dissociated from those with TL+, independent of their postoperative seizure outcome.
Significance: By analyzing 121 connectomes derived from MEG data using a PLS approach, we find that connectomic profiling could dissociate TL from TL+ epilepsy. These findings may inform patient selection for resective procedures and guide decisions surrounding invasive monitoring.
Keywords: epilepsy; functional connectivity; neuroimaging; oscillations; phase-locking.
© 2020 International League Against Epilepsy.