The rapid synthesis of marine ladder polyethers from polyepoxide precursors (in analogy with the biosynthetic pathway hypothesized by Nakanishi) is hampered by the fact that the exo-selective epoxide-opening cyclization cascade that gives THF-type polyethers is preferred over the endo-selective cascade that gives the desired products. We found that perfluoro-tert-butanol (PFTB) cooperating with 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM]BF4 ) can promote endo-selective epoxide-opening cyclization reactions of trisubstituted epoxy alcohols. Starting from readily accessible homochiral polyepoxy alcohols with a methyl group at all the endo-cyclization sites, we were able to construct polyethers up to five consecutive fused 6-, 7-, and/or 8-membered rings in one step. Notably, molecules with the 7/7/6/6 and 7/7/6/7/6 polyether frameworks of hemibrevetoxin B and brevenal, respectively, could be synthesized in 40 % and 17 % chemical yields.
Keywords: brevenal; cyclization cascades; epoxide-opening reactions; fluorinated alcohol; marine polyethers.
© 2020 Wiley-VCH GmbH.