Involvement of the alternative complement pathway (AP) in microvascular endothelial cell (MVEC) injury characteristic of a thrombotic microangiopathy (TMA) is well documented. However, the role of the lectin pathway (LP) of complement has not been explored. We examined mannose-binding lectin associated serine protease (MASP2), the effector enzyme of the LP, in thrombotic thrombocytopenic purpura, atypical hemolytic uremic syndrome and post-allogeneic hematopoietic stem cell transplantation (alloHSCT) TMAs. Plasma MASP2 and terminal complement component sC5b-9 levels were assessed by enzyme-linked immunosorbent assay (ELISA). Human MVEC were exposed to patient plasmas, and the effect of the anti-MASP2 human monoclonal antibody narsoplimab on plasma-induced MVEC activation was assessed by caspase 8 activity. MASP2 levels were highly elevated in all TMA patients versus controls. The relatively lower MASP2 levels in alloHSCT patients with TMAs compared to levels in alloHSCT patients who did not develop a TMA, and a significant decrease in variance of MASP2 levels in the former, may reflect MASP2 consumption at sites of disease activity. Plasmas from 14 of the 22 TMA patients tested (64%) induced significant MVEC caspase 8 activation. This was suppressed by clinically relevant levels of narsoplimab (1·2 μg/ml) for all 14 patients, with a mean 65·7% inhibition (36.8-99.4%; P < 0·0001). In conclusion, the LP of complement is activated in TMAs of diverse etiology. Inhibition of MASP2 reduces TMA plasma-mediated MVEC injury in vitro. LP inhibition therefore may be of therapeutic benefit in these disorders.
Keywords: MASP; complement; hemolytic uremic syndrome; lectin pathway; thrombotic microangiopathy.
© 2020 British Society for Immunology.