In traditional Chinese medicine, the role of the liver in depression is highly valued, and liver-relieving drugs, such as Sinisan, are often used to treat depression; however, the mechanism whereby these drugs work remains unclear. The present study aimed to reveal possible antidepressant mechanisms of Sinisan (SNS) by analyzing hepatic proteomics in chronic unpredictable mild stress (CUMS) mice. Using the CUMS mouse model of depression, the antidepressant effects of SNS were assessed by the sucrose preference test (SPT) and forced swimming test (FST). Hepatic differentially expressed proteins (DEPs) after SNS treatment were investigated by tandem mass tag (TMT) based quantitative proteomics analysis. Then, a bioinformatics analysis of DEPs was conducted through hierarchical clustering, Venn analysis, Gene Ontology (GO) annotation enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. DEP genes were further validated by quantitative real-time polymerase chain reaction (qRT-PCR) analysis and western blotting. Behavioral results demonstrated that SNS significantly increased sucrose intake in SPT and shortened the immobility time in FST in model mice. Eighty-two DEPs were identified, including 37 upregulated and 45 downregulated proteins, between model and SNS groups. Enrichment analysis of GO annotations indicated that SNS primarily maintained cellular iron ion homeostasis by iron ion transportation and regulated expression of some extracellular structural proteins for oxidation-reduction processes. KEGG and Venn analysis showed that mineral absorption, steroid hormone biosynthesis and metabolism might be the principal pathways through which SNS acts on depression. Furthermore, several proteins involved in the biosynthesis and metabolism of steroid hormone pathways were significantly up/downregulated by SNS, including CYP2B19, CYP7B1 (validated by qRT-PCR) and HSD3b5 (validated by qRT-PCR and western blotting). Our results indicate that SNS plays important roles in antidepressant actions by restoring DEPs, resulting in the biosynthesis and metabolism of steroid hormones. The current results provide novel perspectives for revealing potential protein targets of SNS in depression.
Keywords: Antidepressant; Differentially expressed protein; Proteomics; Sinisan; Steroid hormone.
Copyright © 2020 The Authors. Published by Elsevier Masson SAS.. All rights reserved.