Rapid translation of clinical guidelines into executable knowledge: A case study of COVID-19 and online demonstration

Learn Health Syst. 2020 Jul 14;5(1):e10236. doi: 10.1002/lrh2.10236. eCollection 2021 Jan.

Abstract

Introduction: We report a pathfinder study of AI/knowledge engineering methods to rapidly formalise COVID-19 guidelines into an executable model of decision making and care pathways. The knowledge source for the study was material published by BMJ Best Practice in March 2020.

Methods: The PROforma guideline modelling language and OpenClinical.net authoring and publishing platform were used to create a data model for care of COVID-19 patients together with executable models of rules, decisions and plans that interpret patient data and give personalised care advice.

Results: PROforma and OpenClinical.net proved to be an effective combination for rapidly creating the COVID-19 model; the Pathfinder 1 demonstrator is available for assessment at https://www.openclinical.net/index.php?id=746.

Conclusions: This is believed to be the first use of AI/knowledge engineering methods for disseminating best-practice in COVID-19 care. It demonstrates a novel and promising approach to the rapid translation of clinical guidelines into point of care services, and a foundation for rapid learning systems in many areas of healthcare.

Keywords: COVID‐19; artificial intelligence; rapid learning systems.