Context: Obesity is a major health problem associated with severe comorbidities, including type 2 diabetes and cancer, wherein microRNAs (miRNAs) might be useful as diagnostic/prognostic tools or therapeutic targets.
Objective: To explore the differential expression pattern of miRNAs in obesity and their putative role in obesity-related comorbidities such as insulin resistance.
Methods: An Affymetrix-miRNA array was performed in plasma samples from normoweight (n = 4/body mass index < 25) and obese subjects (n = 4/body mass index > 30). The main changes were validated in 2 independent cohorts (n = 221/n = 18). Additionally, in silico approaches were performed and in vitro assays applied in tissue samples and prostate (RWPE-1) and liver (HepG2) cell-lines.
Results: A total of 26 microRNAs were altered (P < 0.01) in plasma of obese subjects compared to controls using the Affymetrix-miRNA array. Validation in ampler cohorts revealed that miR-4454 levels were consistently higher in obesity, associated with insulin-resistance (Homeostatic Model Assessment of Insulin Resistance/insulin) and modulated by medical (metformin/statins) and surgical (bariatric surgery) strategies. miR-4454 was highly expressed in prostate and liver tissues and its expression was increased in prostate and liver cells by insulin. In vitro, overexpression of miR-4454 in prostate cells resulted in decreased expression levels of INSR, GLUT4, and phosphorylation of AMPK/AKT/ERK, as well as in altered expression of key spliceosome components (ESRP1/ESRP2/RBM45/RNU2) and insulin-receptor splicing variants.
Conclusions: Obesity was associated to an alteration of the plasmatic miRNA landscape, wherein miR-4454 levels were higher, associated with insulin-resistance and modulated by obesity-controlling interventions. Insulin regulated miR-4454, which, in turn may impair the cellular response to insulin, in a cell type-dependent manner (i.e., prostate gland), by modulating the splicing process.
Keywords: insulin; insulin receptor; miRNA; obesity; splicing.
© The Author(s) 2020. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.