Chronic renal failure (CRF) is the final outcome of the development of chronic kidney disease with different causes. Although CRF is a common clinical disease, its pathogenesis remains to be improved. SBT-20 belongs to a class of cell-permeable peptides that target the inner mitochondrial membrane, reduce reactive oxygen species (ROS), normalize electron transport chain function, and ATP generation. Our experiment was to evaluate whether SBT-20 affected the oxidative stress and inflammatory process of CRF. The levels of ROS production, mitochondrial membrane potential, NF- κB-p65, TNF-α, Drp1, and mfn2 were measured before and after SBT-20 treatment. We observed that SBT-20 treatment inhibited H2O2-induced mitochondrial ROS production. SBT-20 could also restore the mitochondrial membrane potential and reduce the elevated levels of NF-κB-p65 and TNF-α in HK-2 cells. In vivo, the renal function of CRF mice recovered after treating with SBT-20, the levels of necrotic cells and inflammation decreased, and the morphology of mitochondria recovered. The results showed that SBT-20 had a protective effect on CRF by reducing oxidative stress, inflammation progression via down-regulating of NF-κB-p65, TNF-α, and Drp1 and upregulating of Mfn2. These data support SBT-20 could be used as a potential preparation for CRF.
Keywords: SBT-20; chronic renal failure; inflammation; mitochondrial-targeted peptide; oxidative stress.