Achieving Flat-on Primary Crystals by Nanoconfined Crystallization in High-Temperature Polycarbonate/Poly(vinylidene fluoride) Multilayer Films and Its Effect on Dielectric Insulation

ACS Appl Mater Interfaces. 2020 Oct 7;12(40):44892-44901. doi: 10.1021/acsami.0c15457. Epub 2020 Sep 28.

Abstract

To meet the stringent requirements of next-generation film capacitors for power electronics, multilayer films (MLFs) are fabricated with the advantage of achieving high temperature rating, high energy density, and reasonably low loss simultaneously. In this study, a high permittivity polar polymer, poly(vinylidene fluoride) (PVDF), is multilayered with a linear, low loss dielectric polymer such as high-temperature polycarbonate (HTPC). However, the dielectric loss of these MLFs was still high as compared with current state-of-the-art biaxially oriented polypropylene (BOPP) films. The goal of this work is to decrease the dielectric loss and enhance dielectric insulation by achieving flat-on primary PVDF crystals in MLFs via nanoconfined melt-recrystallization. Based on simultaneous small- and wide-angle X-ray scattering experiments, edge-on lamellar crystals were observed for all as-extruded MLFs, regardless of different PVDF layer thicknesses. However, after melting at 180 °C followed by recrystallization, flat-on primary crystals were successfully achieved when the PVDF layer thickness was below 39 nm. Above 78 nm for the PVDF layer, major edge-on primary crystals with minor flat-on secondary crystals were observed. From leakage current, breakdown, lifetime, and electric displacement-electric field loop studies, MLFs with the flat-on primary crystals exhibited reduced loss and enhanced dielectric insulation as compared to as-extruded MLFs and those with edge-on primary/flat-on secondary crystals. This was attributed to the effective blockage of charge carriers by the flat-on PVDF primary crystals and their reduced ferroelectric switching.

Keywords: dielectric insulation; flat-on crystals; multilayer films; poly(vinylidene fluoride); polycarbonate.