Voice prosthesis implantation with the creation of a tracheoesophageal fistula is the gold standard procedure for voice rehabilitation in patients after a total laryngectomy. All patients implanted with a voice prosthesis (VP) have biofilms of fungi and bacteria grow on their surface. Biofilm colonization is one of the main reasons for VP degradation that can lead to VP dysfunction, which increases the high risk of pneumonia. In a 20-month evaluation period, 129 cases of prostheses after replacement procedures were investigated. Microbiological examination of the biofilms revealed that there were four of the most common fungi species (Candida spp.) and a large variety of bacterial species present. We studied the relationship between the time of proper function of Provox VP, the microorganism composition of the biofilm present on it, and the degradation level of the silicone material. Evaluation of the surface of the removed VP using an atomic force microscope (AFM) has demonstrated that biofilm growth might drastically change the silicone's mechanical properties. Changes in silicone stiffness and thermal properties might contribute to the failure of VP function. Our data can serve in future studies for the development of methods to prevent or inhibit biofilm formation on the VP surface that would translate to an increase in their durability and safety.
Keywords: biofilm; laryngeal cancer; silicone; voice prosthesis.