Xanthomonas theicola is the causal agent of bacterial canker on tea plants. There is no complete genome sequence available for X. theicola, a close relative of the species X. translucens and X. hyacinthi, thus limiting basic research for this group of pathogens. Here, we release a high-quality complete genome sequence for the X. theicola type strain, CFBP 4691T. Single-molecule real-time sequencing with a mean coverage of 264× revealed two contigs of 4,744,641 bp (chromosome) and 40,955 bp (plasmid) in size. Genome mining revealed the presence of nonribosomal peptide synthases, two CRISPR systems, the Xps type 2 secretion system, and the Hrp type 3 secretion system. Surprisingly, this strain encodes an additional type 2 secretion system and a novel type 3 secretion system with enigmatic function, hitherto undescribed for xanthomonads. Four type 3 effector genes were found on complete or partial transposons, suggesting a role of transposons in effector gene evolution and spread. This genome sequence fills an important gap to better understand the biology and evolution of the early-branching xanthomonads, also known as clade-1 xanthomonads.
Keywords: Xanthomonas theicola; bacterial canker; bacterial pathogens; effector-encoding transposon; evolution; genomics; host parasite interactions; microbe-genome sequencing; pathogen effectors; tea plant; type 2 secretion; type 3 secretion.