Objectives: This study aimed to present a new approach of thorough preclinical testing of a novel left atrial appendage (LAA) occluder device.
Background: The development of a safe and effective LAA occluder has been shown to be challenging.
Methods: The novel OMEGATM LAA occluder (Eclipse Medical, Ireland) was tested in a porcine model and three-dimensional (3D) human LAA models - this as a prelude to its first-in-human use.
Results: In a first series of in-vivo experiments, the OMEGATM LAA occluder was shown to have a satisfactory device biocompatibility in a porcine model. The design of the OMEGATM device was further refined and optimized following three more series of in-vivo experiments. The second generation OMEGATM device was designed with thinner wires, leading to a profile reduction. Based on in-vitro testing of different OMEGATM device sizes implanted at different depths in human three-dimensional (3D) LAA models, it could be determined that (1) the landing zone should be measured at a median depth of 12 mm from the LAA ostium; (2) the distal self-retaining inverted cup should have 10%-25% compression to minimize device embolization risk; and (3) the disc should be slightly inverted, i.e. pulled into the LAA, to promote complete LAA occlusion. The combined in-vivo and in-vitro testing resulted in an optimized pre-procedural planning of the first-in-human case treated with the OMEGATM device.
Conclusions: This series of carefully planned in-vivo and in-vitro experiments allowed demonstration of the safety and efficacy of the OMEGATM LAA occluder. This approach of thorough preclinical testing of medical devices may reduce the risk of complications in first-in-human cases and may become the standard approach for device development and preclinical testing in the future.
Keywords: atrial fibrillation; closure; device; left atrial appendage; preclinical testing.
© 2020 Wiley Periodicals LLC.