The mRNA derived MalH sRNA contributes to alternative carbon source utilization by tuning maltoporin expression in E. coli

RNA Biol. 2021 Jun;18(6):914-931. doi: 10.1080/15476286.2020.1827784. Epub 2020 Oct 12.

Abstract

Previous high-throughput studies in Gram-negative bacteria identified a large number of 3'UTR fragments that potentially function as sRNAs. Here we extensively characterize the MalH sRNA. We show that MalH is a stable degradation intermediate derived from the 3' end of malG, which is part of the maltose uptake operon transcript malEFG. Unlike the majority of bacterial sRNAs, MalH is transiently expressed during the transition from the exponential to the stationary growth phase, suggesting that it contributes to adaptation to changes in nutrient availability. Over-expression of MalH reduces expression of general outer membrane porins and MicA, a repressor of the high-affinity maltose/maltodextrin transporter LamB. Disrupting MalH production and function significantly reduces lamB accumulation when maltose is the only available carbon source, presumably due to the accumulation of the MicA repressor. We propose that MalH is part of a regulatory network that, during the transition phase, directly or indirectly promotes accumulation of high-affinity maltose transporters in the outer membrane by dampening competing pathways.

Keywords: 3ʹutr; E. coli; Non-coding RNA; RNA-RNA interactions; next-generation sequencing; stress response.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Outer Membrane Proteins / genetics*
  • Bacterial Outer Membrane Proteins / metabolism
  • Carbon / metabolism*
  • DNA Glycosylases / genetics
  • DNA Glycosylases / metabolism
  • Escherichia coli Proteins / genetics*
  • Escherichia coli Proteins / metabolism
  • Gene Expression Profiling / methods
  • Gene Expression Regulation, Bacterial
  • Maltose / metabolism
  • Operon / genetics
  • Porins / genetics*
  • Porins / metabolism
  • Protein Binding
  • RNA, Bacterial / genetics*
  • RNA, Bacterial / metabolism
  • RNA, Messenger / genetics*
  • RNA, Messenger / metabolism
  • RNA, Small Untranslated / genetics*
  • RNA, Small Untranslated / metabolism
  • RNA-Seq / methods
  • Receptors, Virus / genetics*
  • Receptors, Virus / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction / methods

Substances

  • Bacterial Outer Membrane Proteins
  • Escherichia coli Proteins
  • Porins
  • RNA, Bacterial
  • RNA, Messenger
  • RNA, Small Untranslated
  • Receptors, Virus
  • maltoporins
  • Maltose
  • Carbon
  • DNA Glycosylases
  • mutY adenine glycosylase