Discovery of a dual inhibitor of NQO1 and GSTP1 for treating glioblastoma

J Hematol Oncol. 2020 Oct 21;13(1):141. doi: 10.1186/s13045-020-00979-y.

Abstract

Background: Glioblastoma (GBM) is a universally lethal tumor with frequently overexpressed or mutated epidermal growth factor receptor (EGFR). NADPH quinone oxidoreductase 1 (NQO1) and glutathione-S-transferase Pi 1 (GSTP1) are commonly upregulated in GBM. NQO1 and GSTP1 decrease the formation of reactive oxygen species (ROS), which mediates the oxidative stress and promotes GBM cell proliferation.

Methods: High-throughput screen was used for agents selectively active against GBM cells with EGFRvIII mutations. Co-crystal structures were revealed molecular details of target recognition. Pharmacological and gene knockdown/overexpression approaches were used to investigate the oxidative stress in vitro and in vivo.

Results: We identified a small molecular inhibitor, "MNPC," that binds to both NQO1 and GSTP1 with high affinity and selectivity. MNPC inhibits NQO1 and GSTP1 enzymes and induces apoptosis in GBM, specifically inhibiting the growth of cell lines and primary GBM bearing the EGFRvIII mutation. Co-crystal structures between MNPC and NQO1, and molecular docking of MNPC with GSTP1 reveal that it binds the active sites and acts as a potent dual inhibitor. Inactivation of both NQO1 and GSTP1 with siRNA or MNPC results in imbalanced redox homeostasis, leading to apoptosis and mitigated cancer proliferation in vitro and in vivo.

Conclusions: Thus, MNPC, a dual inhibitor for both NQO1 and GSTP1, provides a novel lead compound for treating GBM via the exploitation of specific vulnerabilities created by mutant EGFR.

Keywords: GBM; GSTP1; NQO1; Oxidative stress; Small molecular inhibitor.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Brain Neoplasms / drug therapy*
  • Brain Neoplasms / metabolism
  • Cell Line, Tumor
  • Drug Discovery
  • Glioblastoma / drug therapy*
  • Glioblastoma / metabolism
  • Glutathione S-Transferase pi / antagonists & inhibitors*
  • Glutathione S-Transferase pi / metabolism
  • Humans
  • Molecular Docking Simulation
  • NAD(P)H Dehydrogenase (Quinone) / antagonists & inhibitors*
  • NAD(P)H Dehydrogenase (Quinone) / metabolism
  • Small Molecule Libraries / pharmacology

Substances

  • Antineoplastic Agents
  • Small Molecule Libraries
  • NAD(P)H Dehydrogenase (Quinone)
  • NQO1 protein, human
  • GSTP1 protein, human
  • Glutathione S-Transferase pi