Preparation, characterization and wound healing effect of vaccarin-chitosan nanoparticles

Int J Biol Macromol. 2020 Dec 15;165(Pt B):3169-3179. doi: 10.1016/j.ijbiomac.2020.10.182. Epub 2020 Oct 26.

Abstract

Wound healing is a complex, dynamic and difficult process. Much effort and attempt has been made to accelerate this process. The purpose of this study is to prepare nanoparticles loaded with vaccarin (VAC-NPS)hydrogel and evaluate its effect on promoting wound healing. In the present study, the physicochemical properties of VAC-NPS were characterized. Transmission electron microscopy (TEM) was used to observe the morphology of VAC-NPS. Human umbilical vein endothelial cells (HUVEC) was employed to assessment the biocompatibility of VAC-NPS in vitro. The wound healing function of VAC-NPS hydrogels was evaluated in the full-thickness dermal wound in a rat model. The results indicated that VAC-NPS was spherical like particles with uniform particle size distribution and no obvious aggregation with a diameter of (216.6 ± 10.1)nm. The loading capacity and encapsulation efficiency of VAC in the nanoparticles were (14.3 ± 1.2) % and (51.7 ± 1.7) % respectively. MTT assay demonstrated that the VAC-NPS had no cytotoxicity and could promote HUVEC proliferation and migration. In vivo results showed that VAC-NPS promotes wound healing, and the mechanism may be through up-regulating IL-1β and PDGF-BB, promoting angiogenesis. VAC-NPS might have a potential application value for the treatment of the wound healing and a promising performance in bio-medically relevant systems.

Keywords: Angiogenesis; IL-1β; PDGF-BB; VAC-NPS; Wound healing.

MeSH terms

  • Animals
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Chitosan / chemistry*
  • Chitosan / pharmacology
  • Flavonoids / chemistry*
  • Flavonoids / pharmacology
  • Glycosides / chemistry*
  • Glycosides / pharmacology
  • Human Umbilical Vein Endothelial Cells
  • Humans
  • Hydrogels / chemistry
  • Hydrogels / pharmacology
  • Microscopy, Electron, Transmission
  • Nanoparticles / chemistry*
  • Rats
  • Wound Healing / drug effects*

Substances

  • Flavonoids
  • Glycosides
  • Hydrogels
  • vaccarin H
  • Chitosan