A novel method for preparing stabilized amorphous solid dispersion drug formulations using acoustic fusion

Int J Pharm. 2021 Jan 5:592:120026. doi: 10.1016/j.ijpharm.2020.120026. Epub 2020 Oct 30.

Abstract

A diverse set of drug and polymer combinations have been effectively evaluated utilizing a newly developed method called acoustic fusion to form amorphous solid dispersions (ASD) on the mg-scale, indicating that this approach is a general procedure that can be applied for ASD drug formulations. We have demonstrated the effectiveness of this acoustic fusion process by generating amorphous solid dispersions of various BCS class 2 and 4 drug candidates, including torcetrapib, itraconazole, and lopinavir, with a variety of polymer systems, including HPMCAS (L, M, and H), copovidone, Soluplus®, PEG1500, Vitamin-E TPGS, Kolliphor EL, and Eudragit, etc. Formulations of these ASD drug products demonstrated significantly elevated solubility of the drug substance compared to the solubility of the crystalline form of the drug. Acoustic fusion products using the model drug torcetrapib in either HPMCAS-LF, copovidone + Vitamin-E TPGS, or Soluplus®, exhibited enhanced supersaturation solubility in aqueous buffer in vitro compared to the drug in crystalline form, indicating that the acoustic fusion process resulted in an amorphous solid dispersion state similar to those formed in spray drying (SD) or hot melt extrusion (HME) processes. In vivo dosing of formulations of the acoustic fusion products in a rat pharmacokinetic study at a dose level of 10 mg/kg resulted in an improvement in exposures of approximately 8-fold by AUC(0-24) in comparison to a conventional suspension formulation of the drug material in crystalline form, thus validating the efficiency of this novel acoustic fusion approach for elevating the bioperformance in preclinical studies.

Keywords: Acoustic fusion; Amorphous solid dispersion; Formulation; Miniaturization; Solubility enhancement.

MeSH terms

  • Acoustics
  • Animals
  • Drug Compounding
  • Hot Melt Extrusion Technology*
  • Itraconazole*
  • Rats
  • Solubility

Substances

  • Itraconazole