Identifying the plastic and stable components of the visual cortex after retinal loss is an important topic in visual neuroscience and neuro-ophthalmology.1-5 Humans with juvenile macular degeneration (JMD) show significant blood-oxygen-level-dependent (BOLD) responses in the primary visual area (V1) lesion projection zone (LPZ),6 despite the absence of the feedforward signals from the degenerated retina. Our previous study7 reported that V1 LPZ responds to full-field visual stimuli during the one-back task (OBT), not during passive viewing, suggesting the involvement of task-related feedback signals. Aiming to clarify whether visual inputs to the intact retina are necessary for the LPZ responses, here, we measured BOLD responses to tactile and auditory stimuli for both JMD patients and control participants with and without OBT. Participants were instructed to close their eyes during the experiment for the purpose of eliminating retinal inputs. Without OBT, no V1 responses were detected in both groups of participants. With OBT, to the contrary, both stimuli caused substantial V1 responses in JMD patients, but not controls. Furthermore, we also found that the task-dependent activity in V1 LPZ became less pronounced when JMD patients opened their eyes, suggesting that task-related feedback signals can be partially suppressed by residual feedforward signals. Modality-independent V1 LPZ responses only in the task condition suggest that V1 LPZ responses reflect task-related feedback signals rather than reorganized feedforward visual inputs.
Keywords: JMD; LPZ; V1; fMRI; feedback; macular degeneration; plasticity; reorganization.
Copyright © 2020 Elsevier Inc. All rights reserved.