Diabetic patients are at increased risk of developing foot ulcers which may cause bone infections associated with a high probability of both amputation and mortality. Therefore, prompt diagnosis and adequate treatment are of key importance. In our Diabetic Foot Unit, effective multidisciplinary treatment of osteomyelitis secondary to diabetes involves the application of a gentamicin-eluting calcium sulphate/hydroxyapatite bone graft substitute to fill residual bone voids after debridement. The data of all patients treated with the gentamicin-eluting calcium sulphate/hydroxyapatite bone graft substitute for diabetic foot infections with ulcer formation and osteomyelitis at metatarsals, calcaneus and hindfoot at our institute from July 2013 to September 2016 were retrospectively collected and evaluated. A total of 35 patients were included in this retrospective single-arm case series and were either continuously followed up for at least one year or until healing was confirmed. Nineteen lesions affected the distal row of tarsus/talus, ten the calcaneus and a further six were located at the metatarsals. While all of the metatarsal lesions had healed at 1-year follow-up, the healing rate in the hindfoot region was lower with 62.5% at the calcaneus and 72.2% at the distal tarsus and talus at 12 months, respectively. The overall cure rate for ulcerous bone infection was 81.3%. In two calcaneal lesions (25%) and two lesions of distal tarsus/talus (11.1%) amputation was considered clinically necessary. Promising results were achieved in the treatment of diabetic foot infections with soft tissue ulcers by a multidisciplinary approach involving extensive debridement followed by adequate dead space management with a resorbable gentamicin-eluting bone graft substitute.
Keywords: CERAMENT G; diabetic foot; gentamicin-loaded calcium sulphate/hydroxyapatite biocomposite; multidisciplinary approach; osteomyelitis; ulcer.