With the newly-developed static-port forward-planning (FP) mode of tomotherapy, the ratio of the dose of the planning target volume (PTV) periphery to the maximum dose can be easily adjusted by modifying leaf margins when planning stereotactic body radiotherapy (SBRT). The purpose of this study was to evaluate the characteristics of FP plans compared to helical intensity-modulated radiotherapy (IMRT) and helical 3D conformal radiotherapy (3DCRT) plans of SBRT for lung tumors. The three plans were created for 14 tumors in 11 patients. For 13 tumors, 60 Gy in 7.5-Gy fractions was prescribed for a minimum coverage dose of 95% of the PTV (D95). The prescribed isodose line (PIL) was intended to be 60-80% of the maximum dose. Nine angles were used for the FP plans. The median D98 and D50 of the internal target volume for FP, helical-IMRT and helical-3DCRT plans were 70.4, 71.4 and 60.5 Gy, respectively (P < 0.001), and 77.7, 75.7 and 62.3 Gy, respectively (P < 0.0001). The median PIL and the lung volume receiving ≥20 Gy (V20) were 73.4, 73.4 and 94.3%, respectively (P < 0.0001), and 4.7, 4.0 and 5.7%, respectively (P < 0.0001). These parameters were not significantly different between the FP and helical-IMRT plans. The median beam-on times were 238.6, 418.9 and 197.1 s, respectively (P < 0.0001). The FP plans reduced the beam-on time by 43% compared to the helical-IMRT plans. The dose distribution of the FP plans was comparable to that of the helical-IMRT plans. The helical-3DCRT plans could not adjust PIL to be 60-80%.
Keywords: forward planning mode; lung cancer; static-port tomotherapy; stereotactic body radiotherapy; tomotherapy.
© The Author(s) 2020. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.