Fatigue-failure in low back tissues is influenced by parameters of cyclic loading. Therefore, this study quantified the effect of loading rate and frequency on the number of tolerated compression cycles. Energy storage and vertical deformation were secondarily examined. Thirty-two porcine spinal units were randomly assigned to experimental groups that differed by loading rate (4.2 kN/s, 8.3 kN/s) and loading frequency (0.5 Hz, 1 Hz). Following preload and range-of-motion tests, specimens were cyclically loaded in a neutral posture until fatigue-failure occurred or 10800 cycles were tolerated. Macroscopic dissection was performed to identify the fracture morphology, and measurements of energy storage and vertical displacement were calculated throughout the specimen lifespan (1%, 10%, 50%, 90%, 99%). Given the differences in compression dose-force-time integral-between experimental conditions, the number of sustained cycles were assessed following linear and nonlinear dose-normalization via correction factors calculated from existing risk-exposure approximations. Without dose-normalization, an 8.3 kN/s loading rate and 0.5 Hz loading frequency reduced the fatigue lifetime by 3541 and 5977 cycles, respectively (p < 0.001). Linear and nonlinear dose-normalization resulted in a significant rate × frequency interaction (p < 0.001). For a 1 Hz loading frequency, the number of sustained loading cycles did not differ between loading rates (padj ≥ 0.988), but at 0.5 Hz, spinal units compressed at 8.3 kN/s sustained 99% (linear) and 97% (nonlinear) fewer cycles (padj < 0.001). These findings demonstrate that the interacting effects of loading frequency and loading rate on spinal fatigue-failure depend on the normalization of dose discrepancies between experimental groups.
Keywords: Deformation; Endplate; Fatigue; Loading frequency; Loading rate.
Copyright © 2020 Elsevier Ltd. All rights reserved.