Background and purpose: Systemic molecular radiotherapy utilizes internal irradiation by radionuclide-labeled tumor-targeting agents with the potential to destroy (micro-)metastases. However, doses that are applicable in solid tumors do not reach the levels nessecary for tumor control. Thus, the combination of molecular and external radiotherapy is a promising treatment strategy, as enhanced tumor doses can be delivered with and without minor overlapping toxicities. Here, we combined a 90Y-labeled anti-EGFR antibody (Cetuximab) with clinically relevant fractionated radiotherapy in a preclinical trial using head and neck squamous cell carcinoma xenograft tumors.
Materials and methods: To model 90Y-Cetuximab uptake for treatment schedule optimization, FaDu-bearing mice were injected with near-infrared-labeled-Cetuximab at different time points during radiotherapy with differing doses. Cetuximab uptake was longitudinally followed by in vivo-optical imaging. Tumor control probability experiments with fractionated radiotherapy (30 fx, 6 weeks, 8 dose groups/ arm) in combination with 90Y-Cetuximab were performed to test the curative potential.
Results: Imaging of near-infrared-labeled-Cetuximab uptake revealed that low to moderate external beam doses can enhance antibody uptake. Using the optimized schedule, combination of molecular and external radiotherapy using 90Y-Cetuximab at a dose that did not result in permanent tumor inactivation in previous experiments, led to substantially increased tumor control compared to radiotherapy alone.
Conclusion: Our results indicate that combination of radiolabeled therapeutics with clinically relevant fractionated radiotherapy has a remarkable potential to improve curative treatment outcome. Application of some radiation dose prior to injection may improve drug uptake and enable patient stratification and treatment personalization via a corresponding PET-tracer during therapy.
Keywords: Cetuximab; Combination therapy; Molecular radiotherapy; Preclinical imaging; Radiation therapy; Radioimmunotherapy.
Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.