[ABO gene subtypes and gene expression analysis in three cases of hematological malignancies patients]

Zhonghua Yi Xue Za Zhi. 2020 Nov 24;100(43):3443-3447. doi: 10.3760/cma.j.cn112137-20200618-01880.
[Article in Chinese]

Abstract

Objective: To explore the application and discovery of genotyping, gene sequencing, and gene expression analysis in the determination of ABO blood group subtypes and antigen expression abnormalities in hematological malignancies patients. Methods: From June 2019 to May 2020, three clinical cases were found with forward and reverse ABO typing discrepancy or atypical serologic agglutination pattern in the laboratory and blood transfusion department of Hebei Yanda Ludaopei Hospital were selected. Sequence-specific primer PCR (PCR-SSP) and Sanger sequencing of ABO gene coding regions were performed to determine the ABO genotypes, and whole transcriptome sequencing was used to analyze ABO and FUT1 gene expression levels. Results: A 12-year-old female acute lymphoblastic leukemia patient was determined as O.01.02 and BA.04 sub-genotype, corresponding to the serological B(A) subtype, and her ABO gene expression was normal (354.80). A 41-year-old female acute myeloid leukemia patient was determined as A1.02 and B.01 genotype, corresponding to the serological A(1)B phenotype, and her ABO gene expression was significantly reduced (45.70). A 42-year-old male with myelodysplastic syndrome and myelofibrosis was determined as A1.02 and A2.05 sub-genotype, corresponding to the serological A(1) and A(2) phenotype, respectively, and his ABO expression was negative. FUT1 expression was in the normal range in all three cases. The clinical blood product infusion strategy was formulated according to the genotype and the corresponding immunological subtype, and no significant transfusion-related adverse reactions occurred. Conclusion: Blood group sub-genotypes or aberrant gene expression can lead to ambiguities in serological blood group determination in hematological malignancies patients. ABO genotyping and gene expression analysis can help in this scenario and escort blood product infusion safety.

目的: 探讨基因分型、基因测序和基因表达分析在血液肿瘤患者ABO血型鉴定疑难情况中的应用和发现。 方法: 选择2019年6月至2020年5月河北燕达陆道培医院检验科与输血科在血型鉴定时发现血清法正反定型结果不符或凝集不典型的患者3例。分别使用序列特异性引物PCR和Sanger测序法鉴定ABO基因型,用转录组测序分析ABO和FUT1基因表达水平。 结果: 1例12岁女性急性淋巴细胞白血病患者为O.01.02和BA.04基因亚型,对应B(A)血清亚型;ABO基因表达量正常(354.80)。1例41岁女性急性髓系白血病患者为A1.02和B.01基因型,对应A(1)B血清型;ABO基因表达显著减低(45.70)。1例42岁男性骨髓增生异常综合征伴骨髓纤维化患者为A1.02和A2.05亚型,分别对应A(1)和A(2)血清型;ABO基因表达量为0。3例患者FUT1基因表达量均在正常范围。临床根据基因型和对应的血清型制定血制品输注策略,无输血相关不良反应发生。 结论: 血液肿瘤患者可因血型基因亚型或基因表达异常导致血清学血型鉴定困难。ABO基因分型和血型基因表达分析可帮助准确判定原因,为血制品输注提供更好的安全保障。.

Keywords: ABO blood-group system; Blood grouping and crossmatching; Gene expression; Genes; Hematologic neoplasms.

Publication types

  • Case Reports

MeSH terms

  • ABO Blood-Group System / genetics
  • Adult
  • Alleles
  • Blood Grouping and Crossmatching*
  • Child
  • Genotype
  • Hematologic Neoplasms* / genetics
  • Humans
  • Male
  • Phenotype

Substances

  • ABO Blood-Group System