F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer

Gut. 2021 Nov;70(11):2123-2137. doi: 10.1136/gutjnl-2020-322780. Epub 2020 Dec 14.

Abstract

Objective: Microbiota disorder promotes chronic inflammation and carcinogenesis. High glycolysis is associated with poor prognosis in patients with colorectal cancer (CRC). However, the potential correlation between the gut microbiota and glucose metabolism is unknown in CRC.

Design: 18F-FDG (18F-fluorodeoxyglucose) PET (positron emission tomography)/CT image scanning data and microbiota PCR analysis were performed to measure the correlation between metabolic alterations and microbiota disorder in 33 patients with CRC. Multiple colorectal cancer models, metabolic analysis and Seahorse assay were established to assess the role of long non-coding RNA (lncRNA) enolase1-intronic transcript 1 (ENO1-IT1) in Fusobacterium (F.) nucleatum-induced glucose metabolism and colorectal carcinogenesis. RNA immunoprecipitation and chromatin immunoprecipitation sequencing were conducted to identify potential targets of lncRNA ENO1-IT1.

Results: We have found F. nucleatum abundance correlated with high glucose metabolism in patients with CRC. Furthermore, F. nucleatum supported carcinogenesis via increasing CRC cell glucose metabolism. Mechanistically, F. nucleatum activated lncRNA ENO1-IT1 transcription via upregulating the binding efficiency of transcription factor SP1 to the promoter region of lncRNA ENO1-IT1. Elevated ENO1-IT behaved as a guider modular for KAT7 histone acetyltransferase, specifying the histone modification pattern on its target genes, including ENO1, and consequently altering CRC biological function.

Conclusion: F. nucleatum and glucose metabolism are mechanistically, biologically and clinically connected to CRC. Targeting ENO1 pathway may be meaningful in treating patients with CRC with elevated F. nucleatum.

Keywords: carcinogenesis; colorectal cancer; glucose metabolism; intestinal bacteria.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers, Tumor
  • Carcinogenesis / genetics*
  • Colorectal Neoplasms / diagnostic imaging
  • Colorectal Neoplasms / genetics*
  • DNA-Binding Proteins
  • Fluorodeoxyglucose F18 / pharmacokinetics
  • Fusobacterium Infections / genetics*
  • Fusobacterium nucleatum
  • Gastrointestinal Microbiome
  • Gene Expression Regulation, Neoplastic
  • Glycolysis / genetics*
  • Histone Acetyltransferases
  • Humans
  • Mice
  • Phosphopyruvate Hydratase
  • Positron Emission Tomography Computed Tomography
  • Prognosis
  • RNA, Long Noncoding / genetics*
  • Radiopharmaceuticals / pharmacokinetics
  • Signal Transduction
  • Tumor Cells, Cultured
  • Tumor Suppressor Proteins

Substances

  • Biomarkers, Tumor
  • DNA-Binding Proteins
  • RNA, Long Noncoding
  • Radiopharmaceuticals
  • Tumor Suppressor Proteins
  • Fluorodeoxyglucose F18
  • Histone Acetyltransferases
  • KAT7 protein, human
  • ENO1 protein, human
  • Eno1 protein, mouse
  • Phosphopyruvate Hydratase