Testicans are modular proteoglycans of the extracellular matrix of various tissues where they contribute to matrix integrity and exert cellular effects like neurite outgrowth and cell migration. Using testican-2 as a representative member of the family, we tackle the complete lack of general structural information and structure-function relationship. First, we show using isothermal titration calorimetry and modeling that extracellular calcium-binding domain (EC) has only one active calcium-binding site, while the other potential site is inactive, and that testican-2 is within extracellular matrix always in the calcium-loaded form. Next, we demonstrate using various prediction methods that N- and C-terminal regions plus interdomain connections are flexible. We support this by small-angle X-ray-scattering analysis of C-terminally truncated testican-2, which indicates that the triplet follistatin-EC-thyroglobulin domain forms a moderately compact core while the unique N-terminal is disordered. Finally, using cell exclusion zone assay, we show that it is this domain triplet that is responsible for promoting cell migration and not the N- and C-terminal regions.
Keywords: SPOCK; calcium-binding; cell migration; structural model; testican.