In-vivo diffusion MRI protocol optimization for the chimpanzee brain and examination of aging effects on the primate optic nerve at 3T

Magn Reson Imaging. 2021 Apr:77:194-203. doi: 10.1016/j.mri.2020.12.015. Epub 2020 Dec 23.

Abstract

Background: Diffusion MRI (dMRI) data acquisition protocols are well-established on modern high-field clinical scanners for human studies. However, these protocols are not suitable for the chimpanzee (or other large-brained mammals) because of its substantial difference in head geometry and brain volume compared with humans. Therefore, an optimal dMRI data acquisition protocol dedicated to chimpanzee neuroimaging is needed.

Methods: A multi-shot (4 segments) double spin-echo echo-planar imaging (MS-EPI) sequence and a single-shot double spin-echo EPI (SS-EPI) sequence were optimized separately for in vivo dMRI data acquisition of chimpanzees using a clinical 3T scanner. Correction for severe susceptibility-induced image distortion and signal drop-off of the chimpanzee brain was performed and evaluated using FSL software. DTI indices in different brain regions and probabilistic tractography were compared. A separate DTI data set from n=34 chimpanzees (13 to 56 years old) was collected using the optimal protocol. Age-related changes in diffusivity indices of optic nerve fibers were evaluated.

Results: The SS-EPI sequence acquired dMRI data of the chimpanzee brain with approximately doubled the SNR as the MS-EPI sequence given the same scan time. The quality of white matter fiber tracking from the SS-EPI data was much higher than that from MS-EPI data. However, quantitative analysis of DTI indices showed no difference in most ROIs between the SS-EPI and MS-EPI sequences. The progressive evolution of diffusivity indices of optic nerves indicated mild changes in fiber bundles of chimpanzees aged 40 years and above.

Conclusion: The single-shot EPI-based acquisition protocol provided better image quality of dMRI for chimpanzee brains and is recommended for in vivo dMRI study or clinical diagnosis of chimpanzees (or other large animals) using a clinical scanner. Also, the tendency of FA decrease or diffusivity increase in the optic nerve of aged chimpanzees was seen but did not show significant age-related changes, suggesting aging may have less impact on optic nerve fiber integrity of chimpanzees, in contrast to previous results for both macaque monkeys and humans.

Keywords: Aging; DTI; Distortion correction; Fiber tracking; Large animals; Non-human primate; Optic nerve.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Aging / physiology*
  • Animals
  • Brain / diagnostic imaging*
  • Brain / physiology*
  • Diffusion Magnetic Resonance Imaging / methods*
  • Echo-Planar Imaging / methods
  • Female
  • Male
  • Neuroimaging
  • Optic Nerve / diagnostic imaging*
  • Pan troglodytes