PGC-1α reduces Amyloid-β deposition in Alzheimer's disease: Effect of increased VDR expression

Neurosci Lett. 2021 Jan 23:744:135598. doi: 10.1016/j.neulet.2020.135598. Epub 2020 Dec 26.

Abstract

Amyloid-β (Aβ) is the core component of amyloid plaques of Alzheimer's disease (AD). Recent evidence has confirmed that Aβ triggers neurodegeneration by dramatically suppressing vitamin D receptor (VDR) expression. Thus far, the onset mechanisms and means of preventing AD are largely unknown. Perioxisome proliferator-activated receptor-γ coactivator (PGC-1α), as a transcriptional coactivator of VDR could protect cells against oxidative stress. Thus, upregulation of PGC-1α is a candidate therapeutic strategy for AD. To investigate the effect of PGC-1α in AD, and to illuminate the precise involvement of VDR in the neuroprotective strategy, the varies of molecular of PGC-1α and VDR were studied in APP/PS-1 double transgenic (2xTg-AD) mice at 6 months of age, significant reduction in the expression of PGC-1α and VDR was found in their hippocampus and the cortex. Besides, a specific mouse line, Dlx5/6-Cre:PGC-1αfl/fl in which the PGC-1α deficiency was limited to the hippocampus and the cortex, was used to study the target intervention of PGC-1α, decreased expression of VDR and increased oxidative damage were observed in AD-related brain regions by PGC-1α deficiency. To explore the function and therapeutic strategy of PGC-1α in AD, an adeno-associated virus (AAV) was used to induce PGC-1α overexpressed in the hippocampus of 2xTg-AD mice. Overexpressed PGC-1α results in a remarkable increase in the levels of VDR associated with a significant reduction in the expression of Aβ plaques and of 8-oxo-dG in 2xTg-AD mice. These data may have ramifications for neuroprotective strategies targeting overexpression of PGC-1α in Alzheimer's disease.

Keywords: APP/PS-1 mice; Alzheimer disease; Amyloid-β; PGC-1α; VDR.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / genetics
  • Alzheimer Disease / metabolism*
  • Amyloid beta-Peptides / antagonists & inhibitors
  • Amyloid beta-Peptides / biosynthesis*
  • Amyloid beta-Peptides / genetics
  • Animals
  • Gene Expression
  • Hippocampus / metabolism
  • Mice
  • Mice, Transgenic
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / biosynthesis*
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / genetics
  • Receptors, Calcitriol / biosynthesis*
  • Receptors, Calcitriol / genetics

Substances

  • Amyloid beta-Peptides
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Ppargc1a protein, mouse
  • Receptors, Calcitriol
  • Vdr protein, mouse