[Characteristics and Source Apportionment of VOCs and O3 in Shijiazhuang]

Huan Jing Ke Xue. 2020 Dec 8;41(12):5325-5335. doi: 10.13227/j.hjkx.202005302.
[Article in Chinese]

Abstract

To study the composition characteristics and sources of volatile organic compounds (VOCs) in Shijiazhuang City, three national control points were selected to conduct VOCs sampling and analysis from March 2017 to January 2018. The correlation of VOCs through combination with meteorological and ground-level O3 data, and the sources of VOCs were analyzed by positive matrix factorization (PMF). To quantify the pollution period of O3 in summer, its temporal sequence characteristics were studied by wavelet analysis. During the sampling period, the average concentration of ambient total VOCs (TVOCs) was (137.23±64.62) μg·m-3. Haloalkanes were the most dominant VOC compounds, accounting for 31.77% of total VOCs mass, followed by aromatic (30.97%) and oxygenated VOCs (OVOCs, 23.76%). The seasonal variation in VOC concentration followed the trend in winter (187.7 μg·m-3) > autumn (146.8 μg·m-3) > spring (133.24 μg·m-3) > summer (107.1 μg·m-3); the concentration of VOCs shows a trend of increasing gradient from west to east. The O3 concentration correlated negatively with VOCs and NO2, and positively with temperature, sunshine duration, wind speed, and visibility. Changes in meteorological elements were concerned before the occurrence of ozone pollution in summer, especially in 4-5 days in June and 7-8 days during July to August after the occurrence of increasing temperature. Finally six potential sources of VOCs were quantified by the PMF model, including from gasoline emissions (24.78%), diesel vehicle emissions (24.69%), solvent usage (18.64%), the chemical industry (11.87%), regional background (10.84%), and the pharmaceutical industry (9.17%). Ozone formation potential (OFP) contribution of emission sources of gasoline and diesel vehicles (54.98%) was over half of the total contribution. Meanwhile, these findings illustrated that control of vehicle emissions and industrial sources would be an important way to reduce VOCs concentrations and improve air quality in Shijiazhuang.

Keywords: Shijiazhuang; ozone; ozone formation potential(OFP); positive matrix factorization(PMF); volatile organic compounds(VOCs); wavelet analysis.

Publication types

  • English Abstract