Over the past 20 years, the toolbox for discovering small-molecule therapeutic starting points has expanded considerably. Pharmaceutical researchers can now choose from technologies that, in addition to traditional high-throughput knowledge-based and diversity screening, now include the screening of fragment and fragment-like libraries, affinity selection mass spectrometry, and selection against DNA-encoded libraries (DELs). Each of these techniques has its own unique combination of advantages and limitations that makes them more, or less, suitable for different target classes or discovery objectives, such as desired mechanism of action. Layered on top of this are the constraints of the drug-hunters themselves, including budgets, timelines, and available platform capacity; each of these can play a part in dictating the hit identification strategy for a discovery program. In this article, we discuss some of the factors that we use to govern our building of a hit identification roadmap for a program and describe the increasing role that DELs are playing in our discovery strategy. Furthermore, we share our learning during our initial exploration of DEL and highlight the approaches we have evolved to maximize the value returned from DEL selections. Topics addressed include the optimization of library design and production, reagent validation, data analysis, and hit confirmation. We describe how our thinking in these areas has led us to build a DEL platform that has begun to deliver tractable matter to our global discovery portfolio.
Keywords: DEL; DNA-encoded library; affinity selection; hit identification; library screening.