Between Fall 2011 and Fall 2012 students at Utah State University played several rounds of Humans versus Zombies (HvZ), a role-playing variant of tag popular on college campuses. The goal of the game is for the zombies to tag humans, converting them into more zombies. Based on portrayals of 'zombieism' in popular culture, one might treat HvZ as a disease system. However, a traditional SIR model with mass-action dynamics does a poor job of modeling HvZ, leading to the natural question: What mechanisms drive the dynamics of the HvZ system? We use model competition, with Bayesian Information Criterion as arbiter, to answer this question. First, we develop a suite of models with a variety of transmission mechanisms and fit to data from fall 2011. We use model competition to determine which model(s) have the most support from the data, thereby offering insight into driving mechanisms for HvZ. Bootstrapping is used to both assess the significance of individual mechanisms and to determine confidence in the performance of our models. Finally, we test predictions of the best models with data from fall 2012. Results indicate that through both years of the game humans tend to cluster defensively, zombies tend to hunt in groups, some zombies are more proficient hunters, and some humans leave the game.
Keywords: Infectious disease modeling; Mathematical ecology; Model competition; Predator prey modeling.