Biogenic amine neurotransmitters promote eicosanoid production and protein homeostasis

EMBO Rep. 2021 Mar 3;22(3):e51063. doi: 10.15252/embr.202051063. Epub 2021 Jan 20.

Abstract

Metazoans use protein homeostasis (proteostasis) pathways to respond to adverse physiological conditions, changing environment, and aging. The nervous system regulates proteostasis in different tissues, but the mechanism is not understood. Here, we show that Caenorhabditis elegans employs biogenic amine neurotransmitters to regulate ubiquitin proteasome system (UPS) proteostasis in epithelia. Mutants for biogenic amine synthesis show decreased poly-ubiquitination and turnover of a GFP-based UPS substrate. Using RNA-seq and mass spectrometry, we found that biogenic amines promote eicosanoid production from poly-unsaturated fats (PUFAs) by regulating expression of cytochrome P450 monooxygenases. Mutants for one of these P450s share the same UPS phenotype observed in biogenic amine mutants. The production of n-6 eicosanoids is required for UPS substrate turnover, whereas accumulation of n-6 eicosanoids accelerates turnover. Our results suggest that sensory neurons secrete biogenic amines to modulate lipid signaling, which in turn activates stress response pathways to maintain UPS proteostasis.

Keywords: dopamine; eicosanoid; protein homeostasis; serotonin; ubiquitin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biogenic Amines
  • Caenorhabditis elegans / genetics
  • Caenorhabditis elegans / metabolism
  • Caenorhabditis elegans Proteins* / genetics
  • Caenorhabditis elegans Proteins* / metabolism
  • Neurotransmitter Agents
  • Proteostasis*

Substances

  • Biogenic Amines
  • Caenorhabditis elegans Proteins
  • Neurotransmitter Agents

Associated data

  • GEO/GSE145255