A 32-channel RF coil was developed for brain imaging of anesthetized non-human primates (rhesus macaque) at 10.5 T. The coil is composed of an 8-channel dipole transmit/receive array, close-fitting 16-channel loop receive array headcap, and 8-channel loop receive array lower insert. The transceiver dipole array is composed of eight end-loaded dipole elements self-resonant at the 10.5 T proton Larmor frequency. These dipole elements were arranged on a plastic cylindrical former, which was split into two to allow for convenient animal positioning. Nested into the bottom of the dipole array former is located an 8-channel loop receive array, which contains 5 × 10 cm2 square loops arranged in two rows of four loops. Arranged in a close-fitting plastic headcap is located a high-density 16-channel loop receive array. This array is composed of 14 round loops 37 mm in diameter and 2 partially detachable, irregularly shaped loops that encircle the ears. Imaging experiments were performed on anesthetized non-human primates on a 10.5 T MRI system equipped with body gradients with a 60 cm open bore. The coil enabled submillimeter (0.58 mm isotropic) high-resolution anatomical and functional imaging as well as tractography of fasciculated axonal bundles. The combination of a close-fitting loop receive array and dipole transceiver array allowed for a higher-channel-count receiver and consequent higher signal-to-noise ratio and parallel imaging gains. Parallel imaging performance supports high-resolution functional MRI and diffusion MRI with a factor of three reduction in sampling. The transceive array elements during reception contributed approximately one-quarter of the signal-to-noise ratio in the lower half of the brain, which was farthest from the close-fitting headcap receive array.
Keywords: 10.5 T; 32-channel receive array; MRI; RF coil; dipole array; loop array; non-human primate; ultra-high field.
© 2021 John Wiley & Sons, Ltd.