Insufficient or lack of response to antipsychotic medications in some patients with schizophrenia is a major challenge in psychiatry, but the underlying mechanisms remain unclear. Two seemingly unrelated observations, cerebral white matter and N-methyl-D-aspartate receptor (NMDAR) hypofunction, have been linked to treatment-resistant schizophrenia (TRS). As NMDARs are critical to axonal myelination and signal transduction, we hypothesized that NMDAR antibody (Ab), when present in schizophrenia, may impair NMDAR functions and white matter microstructures, contributing to TRS. In this study, 50 patients with TRS, 45 patients with nontreatment-resistant schizophrenia (NTRS), 53 patients with schizophrenia at treatment initiation schizophrenia (TIS), and 90 healthy controls were enrolled. Serum NMDAR Ab levels and white matter diffusion tensor imaging fractional anisotropy (FA) were assessed. The white matter specificity effects by NMDAR Ab were assessed by comparing with effects on cortical and subcortical gray matter. Serum NMDAR Ab levels of the TRS were significantly higher than those of the NTRS (P = .035). In patients with TRS, higher NMDAR Ab levels were significantly associated with reduced whole-brain average FA (r = -.37; P = .026), with the strongest effect at the genu of corpus callosum (r = -.50; P = .0021, significant after correction for multiple comparisons). Conversely, there was no significant correlation between whole-brain or regional cortical thickness or any subcortical gray matter structural volume and NMDAR Ab levels in TRS. Our finding highlights a potential NMDAR mechanism on white matter microstructure impairment in schizophrenia that may contribute to their treatment resistance to antipsychotic medications.
Keywords: NMDAR antibody; cortical thickness; genu of corpus callosum; subcortical gray matter structural volume; treatment-resistant schizophrenia; white matter FA.
© The Author(s) 2021. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.